背景
在我之前的文章 K8S 生态周报| Google 选择 Cilium 作为 GKE 下一代数据面 一文中,我介绍了 Google 宣布使用 Cilium 作为 GKE 的下一代数据面,及其背后的故事。
Google 选择 Cilium 主要是为了增加 GKE 平台的容器安全性和可观测性。那么,Cilium 到底是什么,为什么会有这么强的吸引力呢?
摘一段官网的介绍:
Cilium is open source software for transparently securing the network connectivity between application services deployed using Linux container management platforms like Docker and Kubernetes.
Cilium 是一个用于透明保护部署在 Linux 容器管理平台(比如 Docker 和 Kubernetes)上的应用服务之间网络连接的开源软件。
为什么着重强调是 “Linux 容器管理平台” 呢?这就不得不提到 Cilium 的实现了。Cilium 的基础是一种称为 eBPF 的 Linux 内核技术,使用 eBPF 可以在 Linux 自身内部动态的插入一些控制逻辑,从而满足可观察性和安全性相关的需求。
只谈概念毕竟过于空洞,本节我们直接上手实践一下 Cilium 。
准备集群
这里我使用 KIND 来创建一套多节点的本地集群。
写配置文件
在创建集群时候,通过配置文件来禁用掉 KIND 默认的 CNI 插件。
kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
- role: control-plane
- role: worker
- role: worker
- role: worker
networking:
disableDefaultCNI: true
启动集群
将配置文件命名为 kindconfig
,通过 --config
参数来指定它。 通过 --image
参数可指定创建集群所使用的镜像,这里我使用 kindest/node:v1.19.0@sha256:6a6e4d588db3c2873652f382465eeadc2644562a64659a1da4
来创建一个最新的 Kubernetes v1.19.0 版本的集群。
(MoeLove) ➜ ~ kind create cluster --config=kindconfig --image=kindest/node:v1.19.0@sha256:6a6e4d588db3c2873652f382465eeadc2644562a64659a1da4
db73d3beaa8848
Creating cluster "kind" ...
✓ Ensuring node image (kindest/node:v1.19.0) 🖼
✓ Preparing nodes 📦 📦 📦 📦
✓ Writing configuration 📜
✓ Starting control-plane 🕹️
✓ Installing StorageClass 💾
✓ Joining worker nodes 🚜
Set kubectl context to "kind-kind"
You can now use your cluster with:
kubectl cluster-info --context kind-kind
Have a question, bug, or feature request? Let us know! https://kind.sigs.k8s.io/#community 🙂
查看状态
由于我们已经禁用了 KIND 默认的 CNI ,所以现在集群的 Node 都是 NotReady
的状态,等待 CNI 的初始化。
(MoeLove) ➜ ~ kubectl get nodes
NAME STATUS ROLES AGE VERSION
kind-control-plane NotReady master 85s v1.19.0
kind-worker NotReady <none> 49s v1.19.0
kind-worker2 NotReady <none> 49s v1.19.0
kind-worker3 NotReady <none> 49s v1.19.0
部署 Cilium
部署 Cilium 可以有多种方式,这里我们选择最简单的,直接使用 Helm 3 进行部署。
添加 Helm 仓库
Cilium 提供了官方维护的 Helm 仓库,我们先来添加它。
注意: 请使用 Helm 3。 在之前的文章 K8S 生态周报| Helm v2 进入维护期倒计时 中,我曾介绍过 Helm v2 的维护期已经进入倒计时,三个月后将停止为 Helm v2 提供安全补丁,届时 Helm v2 的维护期就彻底终止了。
(MoeLove) ➜ ~ helm repo add cilium https://helm.cilium.io/
"cilium" has been added to your repositories
预加载镜像
这一步并非必须。 只是由于每个在 Node 上都需要下载 cilium/cilium:v1.8.2
的镜像,会很耗时,所以我们可以直接使用 kind load docker-image
将主机 Docker 中的镜像加载到 KIND 创建的集群中。
# 下载镜像
(MoeLove) ➜ ~ docker pull cilium/cilium:v1.8.2
v1.8.2: Pulling from cilium/cilium
Digest: sha256:9dffe79408025f7523a94a1828ac1691b997a2b1dbd69af338cfbecc8428d326
Status: Image is up to date for cilium/cilium:v1.8.2
docker.io/cilium/cilium:v1.8.2
# 将镜像加载到 KIND 集群中
(MoeLove) ➜ ~ kind load docker-image cilium/cilium:v1.8.2
Image: "cilium/cilium:v1.8.2" with ID "sha256:009715be68951ab107617f04dc50bcceb3d3f1e0c09db156aacf95e56eb0d5cc" not yet present on node "kind-worker3", loading...
Image: "cilium/cilium:v1.8.2" with ID "sha256:009715be68951ab107617f04dc50bcceb3d3f1e0c09db156aacf95e56eb0d5cc" not yet present on node "kind-control-plane", loading...
Image: "cilium/cilium:v1.8.2" with ID "sha256:009715be68951ab107617f04dc50bcceb3d3f1e0c09db156aacf95e56eb0d5cc" not yet present on node "kind-worker", loading...
Image: "cilium/cilium:v1.8.2" with ID "sha256:009715be68951ab107617f04dc50bcceb3d3f1e0c09db156aacf95e56eb0d5cc" not yet present on node "kind-worker2", loading...
镜像加载完成后,可使用如下命令进行二次确认:
for i in `docker ps --filter label=io.x-k8s.kind.cluster=kind -q`
do
docker exec $i ctr -n k8s.io -a /run/containerd/containerd.sock i ls |grep cilium
done
使用 Helm 部署 Cilium
(MoeLove) ➜ ~ helm install cilium cilium/cilium --version 1.8.2 \
--namespace kube-system \
--set global.nodeinit.enabled=true \
--set global.kubeProxyReplacement=partial \
--set global.hostServices.enabled=false \
--set global.externalIPs.enabled=true \
--set global.nodePort.enabled=true \
--set global.hostPort.enabled=true \
--set global.pullPolicy=IfNotPresent \
--set config.ipam=kubernetes \
--set global.hubble.enabled=true \
--set global.hubble.relay.enabled=true \
--set global.hubble.ui.enabled=true \
--set global.hubble.metrics.enabled="{dns,drop,tcp,flow,port-distribution,icmp,http}"
NAME: cilium
LAST DEPLOYED: Wed Sep 2 21:03:23 2020
NAMESPACE: kube-system
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
You have successfully installed Cilium with Hubble Relay and Hubble UI.
Your release version is 1.8.2.
For any further help, visit https://docs.cilium.io/en/v1.8/gettinghelp
这里对几个配置项做下说明:
global.hubble.enabled=true
: 表示启用 Hubble 。global.hubble.metrics.enabled="{dns,drop,tcp,flow,port-distribution,icmp,http}
:表示 Hubble 暴露出的 metrics 中包含哪些内容,如果不指定则表示禁用它。global.hubble.ui.enabled=true
:表示启用 Hubble UI
对于 Hubble 是什么,我们稍后再介绍。
当 Cilium 部署完成后,我们可以查看下部署的 ns 下的 Pod 情况:
(MoeLove) ➜ ~ kubectl -n kube-system get pods
NAME READY STATUS RESTARTS AGE
cilium-86dbc 1/1 Running 0 2m11s
cilium-cjcps 1/1 Running 0 2m11s
cilium-f8dtm 1/1 Running 0 2m11s
cilium-node-init-9r9cm 1/1 Running 1 2m11s
cilium-node-init-bkg28 1/1 Running 1 2m11s
cilium-node-init-jgx6r 1/1 Running 1 2m11s
cilium-node-init-s7xhx 1/1 Running 1 2m11s
cilium-operator-756cc96896-brlrh 1/1 Running 0 2m11s
cilium-t8kqc 1/1 Running 0 2m11s
coredns-f9fd979d6-7vfnq 1/1 Running 0 6m16s
coredns-f9fd979d6-h7rfw 1/1 Running 0 6m16s
etcd-kind-control-plane 1/1 Running 0 6m19s
hubble-relay-666ddfd69b-2lpsz 1/1 Running 0 2m11s
hubble-ui-7854cf65dc-ncj89 1/1 Running 0 2m11s
kube-apiserver-kind-control-plane 1/1 Running 0 6m19s
kube-controller-manager-kind-control-plane 1/1 Running 0 6m19s
kube-proxy-48rwk 1/1 Running 0 6m16s
kube-proxy-8mn58 1/1 Running 0 5m59s
kube-proxy-jptln 1/1 Running 0 5m59s
kube-proxy-pp24h 1/1 Running 0 5m59s
kube-scheduler-kind-control-plane 1/1 Running 0 6m19s
查看 Node 的状态:
(MoeLove) ➜ ~ kubectl get nodes
NAME STATUS ROLES AGE VERSION
kind-control-plane Ready master 7m1s v1.19.0
kind-worker Ready <none> 6m26s v1.19.0
kind-worker2 Ready <none> 6m26s v1.19.0
kind-worker3 Ready <none> 6m26s v1.19.0
Cilium 功能体验
Hubble 介绍
上文中,通过 Helm 部署 Cilium 时,我们指定了一些与 Hubble 有关的参数,但尚未介绍 Hubble 具体是什么。这里简单介绍下。
Hubble 是一个完全分布式的网络和安全性的可观察性平台,它建立在 Cilium 和 eBPF 之上,以完全透明的方式深入了解服务以及网络基础结构的通信和行为。
由于它是构建在 Cilium 之上的,Hubble 可以利用 eBPF 获得可见性。通过使用 eBPF ,所有可见性都是可编程的,并且可以最大程度的减少开销,同时根据用户需要提供深入和详尽的可见性。例如:
- 了解服务之间的依赖关系。可以观测到服务之间是否有通信,通信频率,以及 HTTP 调用产生的状态码等;
- 监控网络和告警。可以观测到网络连接是否异常,是 L4 还是 L7 有问题,DNS 查询是否异常等;
- 监控应用程序。可以观测到 HTTP 4xx/5xx 的错误率,HTTP 请求和响应的 95 值,99值等;
- 监控安全问题。可以观测到哪些请求是被 Network Policy 所拒绝的,哪些服务解析了特定的域名等;
可观察性
我们可以直接使用 hubble observe
观测当前集群中的连接情况:
(MoeLove) ➜ hubble-ui git:(master) kubectl exec -n kube-system -t ds/cilium -- hubble observe
TIMESTAMP SOURCE DESTINATION TYPE VERDICT SUMMARY
Sep 2 07:06:41.624 kube-system/coredns-f9fd979d6-h7rfw:8181 10.244.1.50:52404 to-stack FORWARDED TCP Flags: ACK, FIN
Sep 2 07:06:41.625 10.244.1.50:52404 kube-system/coredns-f9fd979d6-h7rfw:8181 to-endpoint FORWARDED TCP Flags: ACK, FIN
Sep 2 07:06:42.376 10.244.1.12:4240 10.244.0.76:45164 to-overlay FORWARDED TCP Flags: ACK
Sep 2 07:06:42.376 10.244.0.76:45164 10.244.1.12:4240 to-endpoint FORWARDED TCP Flags: ACK
Sep 2 07:06:42.778 10.244.1.50:37512 10.244.1.12:4240 to-endpoint FORWARDED TCP Flags: ACK, PSH
Sep 2 07:06:42.778 10.244.1.12:4240 10.244.1.50:37512 to-stack FORWARDED TCP Flags: ACK, PSH
Sep 2 07:06:44.941 10.244.1.50:59870 10.244.0.108:4240 to-overlay FORWARDED TCP Flags: ACK
Sep 2 07:06:44.941 10.244.1.12:4240 10.244.2.220:47616 to-overlay FORWARDED TCP Fla
gs: ACK
Sep 2 07:06:44.941 10.244.1.50:52090 10.244.3.159:4240 to-overlay FORWARDED TCP Fla
gs: ACK
Sep 2 07:06:44.941 10.244.1.50:52958 10.244.2.81:4240 to-overlay FORWARDED TCP Fla
gs: ACK
Sep 2 07:06:44.941 10.244.2.220:47616 10.244.1.12:4240 to-endpoint FORWARDED TCP Fla
gs: ACK
Sep 2 07:06:45.448 10.244.1.12:4240 10.244.3.111:54012 to-overlay FORWARDED TCP Fla
gs: ACK
Sep 2 07:06:45.449 10.244.3.111:54012 10.244.1.12:4240 to-endpoint FORWARDED TCP Fla
gs: ACK
Sep 2 07:06:47.631 kube-system/coredns-f9fd979d6-h7rfw:36120 172.18.0.4:6443 to-stack FORWARDED TCP Fla
gs: ACK
Sep 2 07:06:47.822 10.244.1.50:60914 kube-system/coredns-f9fd979d6-h7rfw:8080 to-endpoint FORWARDED TCP Fla
gs: SYN
Sep 2 07:06:47.822 kube-system/coredns-f9fd979d6-h7rfw:8080 10.244.1.50:60914 to-stack FORWARDED TCP Fla
gs: SYN, ACK
Sep 2 07:06:47.822 10.244.1.50:60914 kube-system/coredns-f9fd979d6-h7rfw:8080 to-endpoint FORWARDED TCP Fla
gs: ACK
Sep 2 07:06:47.823 kube-system/coredns-f9fd979d6-h7rfw:8080 10.244.1.50:60914 to-stack FORWARDED TCP Fla
gs: ACK, PSH
Sep 2 07:06:47.823 kube-system/coredns-f9fd979d6-h7rfw:8080 10.244.1.50:60914 to-stack FORWARDED TCP Fla
gs: ACK, FIN
Sep 2 07:06:47.823 10.244.1.50:60914 kube-system/coredns-f9fd979d6-h7rfw:8080 to-endpoint FORWARDED TCP Fla
gs: ACK, PSH
可以看到内容很详细,包括通信的两端,以及发的包是 ACK
还是 SYN
等信息均可观测到。
部署测试应用
这里我们部署一个测试应用来实际体验下 Cilium 提供的强大功能。官方仓库中提供了一个 connectivity-check 的测试用例,这里我对它做了精简和修改,以便理解。
这里定义的内容如下:
- 1 个名为
echo-a
的 svc ,用于暴露echo-a
这个测试服务; - 4 个 deploy ,分别是 1 个测试服务,以及三个用于测试与
echo-a
联通性的 deploy; - 2 个 CiliumNetworkPolicy,用来控制是否允许与
echo-a
联通;
---
apiVersion: v1
kind: Service
metadata:
name: echo-a
spec:
type: ClusterIP
ports:
- port: 80
selector:
name: echo-a
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: echo-a
spec:
selector:
matchLabels:
name: echo-a
replicas: 1
template:
metadata:
labels:
name: echo-a
spec:
containers:
- name: echo-container
image: docker.io/cilium/json-mock:1.0
imagePullPolicy: IfNotPresent
readinessProbe:
exec:
command: ["curl", "-sS", "--fail", "-o", "/dev/null", "localhost"]
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: pod-to-a-allowed-cnp
spec:
selector:
matchLabels:
name: pod-to-a-allowed-cnp
replicas: 1
template:
metadata:
labels:
name: pod-to-a-allowed-cnp
spec:
containers:
- name: pod-to-a-allowed-cnp-container
image: docker.io/byrnedo/alpine-curl:0.1.8
command: ["/bin/ash", "-c", "sleep 1000000000"]
imagePullPolicy: IfNotPresent
livenessProbe:
exec:
command: ["curl", "-sS", "--fail", "-o", "/dev/null", "echo-a"]
readinessProbe:
exec:
command: ["curl", "-sS", "--fail", "-o", "/dev/null", "echo-a"]
---
apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
name: "pod-to-a-allowed-cnp"
spec:
endpointSelector:
matchLabels:
name: pod-to-a-allowed-cnp
egress:
- toEndpoints:
- matchLabels:
name: echo-a
toPorts:
- ports:
- port: "80"
protocol: TCP
- toEndpoints:
- matchLabels:
k8s:io.kubernetes.pod.namespace: kube-system
k8s:k8s-app: kube-dns
toPorts:
- ports:
- port: "53"
protocol: UDP
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: pod-to-a-l3-denied-cnp
spec:
selector:
matchLabels:
name: pod-to-a-l3-denied-cnp
replicas: 1
template:
metadata:
labels:
name: pod-to-a-l3-denied-cnp
spec:
containers:
- name: pod-to-a-l3-denied-cnp-container
image: docker.io/byrnedo/alpine-curl:0.1.8
command: ["/bin/ash", "-c", "sleep 1000000000"]
imagePullPolicy: IfNotPresent
livenessProbe:
timeoutSeconds: 7
exec:
command: ["ash", "-c", "! curl -sS --fail --connect-timeout 5 -o /dev/null echo-a"]
readinessProbe:
timeoutSeconds: 7
exec:
command: ["ash", "-c", "! curl -sS --fail --connect-timeout 5 -o /dev/null echo-a"]
---
apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
name: "pod-to-a-l3-denied-cnp"
spec:
endpointSelector:
matchLabels:
name: pod-to-a-l3-denied-cnp
egress:
- toEndpoints:
- matchLabels:
k8s:io.kubernetes.pod.namespace: kube-system
k8s:k8s-app: kube-dns
toPorts:
- ports:
- port: "53"
protocol: UDP
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: pod-to-a
spec:
selector:
matchLabels:
name: pod-to-a
replicas: 1
template:
metadata:
labels:
name: pod-to-a
spec:
containers:
- name: pod-to-a-container
image: docker.io/byrnedo/alpine-curl:0.1.8
command: ["/bin/ash", "-c", "sleep 1000000000"]
imagePullPolicy: IfNotPresent
livenessProbe:
exec:
command: ["curl", "-sS", "--fail", "-o", "/dev/null", "echo-a"]
直接部署即可:
(MoeLove) ➜ ~ kubectl apply -f cilium-demo.yaml
service/echo-a created
deployment.apps/echo-a created
deployment.apps/pod-to-a-allowed-cnp created
ciliumnetworkpolicy.cilium.io/pod-to-a-allowed-cnp created
deployment.apps/pod-to-a-l3-denied-cnp created
ciliumnetworkpolicy.cilium.io/pod-to-a-l3-denied-cnp created
deployment.apps/pod-to-a created
查看 Pod 状态,看看状态是否正常:
(MoeLove) ➜ ~ kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-a-8b6595b89-w9kt2 1/1 Running 0 49s
pod-to-a-5567c85856-xsg5b 1/1 Running 0 49s
pod-to-a-allowed-cnp-7b85c8db8-jrjhx 1/1 Running 0 49s
pod-to-a-l3-denied-cnp-7f64d7b7c4-fsxrm 1/1 Running 0 49s
命令行观测
接下来,使用 hubble observe
观察下效果,已经可以看到我们部署的应用产生的连接了。
(MoeLove) ➜ ~ kubectl exec -n kube-system -t ds/cilium -- hubble observe
TIMESTAMP SOURCE DESTINATION TYPE VERDICT SUMMARY
Sep 3 00:00:13.481 default/pod-to-a-5567c85856-xsg5b:60784 default/echo-a-8b6595b89-w9kt2:80 to-endpoint FORWARDED TCP Flags: ACK, PSH
Sep 3 00:00:15.429 kube-system/coredns-f9fd979d6-h7rfw:53 default/pod-to-a-allowed-cnp-7b85c8db8-jrjhx:43696 to-endpoint FORWARDED UDP
Sep 3 00:00:16.010 10.244.1.12:4240 10.244.2.220:50830 to-overlay FORWARDED TCP Flags: ACK
Sep 3 00:00:16.010 10.244.1.12:4240 10.244.1.50:40402 to-stack FORWARDED TCP Flags: ACK
Sep 3 00:00:16.010 10.244.1.50:40402 10.244.1.12:4240 to-endpoint FORWARDED TCP Flags: ACK
Sep 3 00:00:16.011 10.244.2.220:50830 10.244.1.12:4240 to-endpoint FORWARDED TCP Flags: ACK
Sep 3 00:00:16.523 10.244.1.12:4240 10.244.3.111:57242 to-overlay FORWARDED TCP Flags: ACK
Sep 3 00:00:16.523 10.244.3.111:57242 10.244.1.12:4240 to-endpoint FORWARDED TCP Flags: ACK
Sep 3 00:00:21.376 kube-system/coredns-f9fd979d6-h7rfw:53 default/pod-to-a-l3-denied-cnp-7f64d7b7c4-fsxrm:44785 to-overlay FORWARDED UDP
Sep 3 00:00:21.377 kube-system/coredns-f9fd979d6-h7rfw:53 default/pod-to-a-l3-denied-cnp-7f64d7b7c4-fsxrm:44785 to-overlay FORWARDED UDP
Sep 3 00:00:23.896 kube-system/coredns-f9fd979d6-h7rfw:36120 172.18.0.4:6443 to-stack FORWARDED TCP Flags: ACK
Sep 3 00:00:25.428 default/pod-to-a-allowed-cnp-7b85c8db8-jrjhx:55678 default/echo-a-8b6595b89-w9kt2:80 L3-L4 FORWARDED TCP Flags: SYN
Sep 3 00:00:25.428 default/pod-to-a-allowed-cnp-7b85c8db8-jrjhx:55678 default/echo-a-8b6595b89-w9kt2:80 to-endpoint FORWARDED TCP Flags: SYN
Sep 3 00:00:25.428 default/echo-a-8b6595b89-w9kt2:80 default/pod-to-a-allowed-cnp-7b85c8db8-jrjhx:55678 to-endpoint FORWARDED TCP Flags: SYN, ACK
Sep 3 00:00:25.428 default/pod-to-a-allowed-cnp-7b85c8db8-jrjhx:55678 default/echo-a-8b6595b89-w9kt2:80 to-endpoint FORWARDED TCP Flags: ACK
Sep 3 00:00:25.428 default/pod-to-a-allowed-cnp-7b85c8db8-jrjhx:55678 default/echo-a-8b6595b89-w9kt2:80 to-endpoint FORWARDED TCP Flags: ACK, PSH
Sep 3 00:00:25.429 default/pod-to-a-allowed-cnp-7b85c8db8-jrjhx:55678 default/echo-a-8b6595b89-w9kt2:80 to-endpoint FORWARDED TCP Flags: ACK, FIN
Sep 3 00:00:29.546 10.244.1.50:57770 kube-system/coredns-f9fd979d6-h7rfw:8080 to-endpoint FORWARDED TCP Flags: SYN
Sep 3 00:00:29.546 kube-system/coredns-f9fd979d6-h7rfw:8080 10.244.1.50:57770 to-stack FORWARDED TCP Flags: SYN, ACK
Sep 3 00:00:29.546 10.244.1.50:57770 kube-system/coredns-f9fd979d6-h7rfw:8080 to-endpoint FORWARDED TCP Flags: ACK
Hubble UI 观测
还记得我们在上文中部署 Cilium 时候配置的几个关于 Hubble 的参数么,现在我们可以使用 Hubble UI 来看看效果。
先检查下 kube-system
ns 下,是否有 hubble-ui
这个 svc 。
(MoeLove) ➜ kubectl -n kube-system get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hubble-metrics ClusterIP None <none> 9091/TCP 4m31s
hubble-relay ClusterIP 10.102.90.19 <none> 80/TCP 4m31s
hubble-ui ClusterIP 10.96.69.234 <none> 80/TCP 4m31s
kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP,9153/TCP 8m51s
直接使用 kubectl port-forward
,从本地来访问 Hubble UI 。
(MoeLove) ➜ ~ kubectl -n kube-system port-forward svc/hubble-ui 12000:80
Forwarding from 127.0.0.1:12000 -> 12000
Forwarding from [::1]:12000 -> 12000
浏览器中打开 http://127.0.0.1:12000 即可。
可以看到我们刚才部署的所有 Pod,以及查看到相应的 CiliumNetworkPolicy 等信息,这里就不赘述了,有兴趣的小伙伴可以自行探索下。
Hubble metrics 观测
我们也可以使用 Hubble 暴露出来的 metrics 进行观测:
(MoeLove) ➜ ~ kubectl port-forward -n kube-system ds/cilium 19091:9091
Forwarding from 127.0.0.1:19091 -> 9091
Forwarding from [::1]:19091 -> 9091
简单看下其中的内容,包含各类请求/响应/丢弃等相关的统计信息,还有包括每个目标端口包的数量统计等。感兴趣的小伙伴可以自行探索下。
(MoeLove) ➜ ~ curl -s localhost:19091/metrics | head -n 22
# HELP hubble_dns_queries_total Number of DNS queries observed
# TYPE hubble_dns_queries_total counter
hubble_dns_queries_total{ips_returned="0",qtypes="A",rcode=""} 1165
hubble_dns_queries_total{ips_returned="0",qtypes="AAAA",rcode=""} 1165
# HELP hubble_dns_response_types_total Number of DNS queries observed
# TYPE hubble_dns_response_types_total counter
hubble_dns_response_types_total{qtypes="A",type="A"} 233
hubble_dns_response_types_total{qtypes="AAAA",type="AAAA"} 233
# HELP hubble_dns_responses_total Number of DNS queries observed
# TYPE hubble_dns_responses_total counter
hubble_dns_responses_total{ips_returned="0",qtypes="A",rcode="Non-Existent Domain"} 932
hubble_dns_responses_total{ips_returned="0",qtypes="AAAA",rcode="Non-Existent Domain"} 932
hubble_dns_responses_total{ips_returned="1",qtypes="A",rcode="No Error"} 233
hubble_dns_responses_total{ips_returned="1",qtypes="AAAA",rcode="No Error"} 233
# HELP hubble_drop_total Number of drops
# TYPE hubble_drop_total counter
hubble_drop_total{protocol="ICMPv4",reason="Policy denied"} 459
hubble_drop_total{protocol="ICMPv4",reason="Unsupported protocol for NAT masquerade"} 731
hubble_drop_total{protocol="ICMPv6",reason="Unsupported L3 protocol"} 213
hubble_drop_total{protocol="TCP",reason="Policy denied"} 1425
hubble_drop_total{protocol="UDP",reason="Stale or unroutable IP"} 6
hubble_drop_total{protocol="Unknown flow",reason="Policy denied"} 1884
验证 CiliumNetworkPolicy 的效果
说了这么多,我们来验证下刚才部署的 CiliumNetworkPolicy 的实际效果吧。
以下是刚才部署的测试 Pod, 我们通过这些 Pod 来访问 echo-a
这个 svc 。
(MoeLove) ➜ ~ kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-a-8b6595b89-w9kt2 1/1 Running 0 79m
pod-to-a-5567c85856-xsg5b 1/1 Running 0 79m
pod-to-a-allowed-cnp-7b85c8db8-jrjhx 1/1 Running 0 79m
pod-to-a-l3-denied-cnp-7f64d7b7c4-fsxrm 1/1 Running 0 79m
pod-to-a
这是未配置任何 CiliumNetworkPolicy 规则的 Pod
(MoeLove) ➜ ~ kubectl exec pod-to-a-5567c85856-xsg5b -- curl -sI --connect-timeout 5 echo-a
HTTP/1.1 200 OK
X-Powered-By: Express
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Sat, 26 Oct 1985 08:15:00 GMT
ETag: W/"83d-7438674ba0"
Content-Type: text/html; charset=UTF-8
Content-Length: 2109
Date: Thu, 03 Sep 2020 00:54:05 GMT
Connection: keep-alive
pod-to-a-allowed-cnp
配置了允许通过TCP
访问echo-a
(MoeLove) ➜ ~ kubectl exec pod-to-a-allowed-cnp-7b85c8db8-jrjhx -- curl -sI --connect-timeout 5 echo-a
HTTP/1.1 200 OK
X-Powered-By: Express
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Sat, 26 Oct 1985 08:15:00 GMT
ETag: W/"83d-7438674ba0"
Content-Type: text/html; charset=UTF-8
Content-Length: 2109
Date: Thu, 03 Sep 2020 01:10:27 GMT
Connection: keep-alive
pod-to-a-l3-denied-cnp
则是只配置了允许访问 DNS,而未配置允许对echo-a
的访问
(MoeLove) ➜ ~ kubectl exec pod-to-a-l3-denied-cnp-7f64d7b7c4-fsxrm -- curl -sI --connect-timeout 5 echo-a
command terminated with exit code 28
可以看到,如果对 Pod 应用了 CiliumNetworkPolicy , 但是未配置对应的允许规则的话,则代表不允许访问。
比如,我们可以使用上面两个配置了 CiliumNetworkPolicy 的 Pod 来访问下公网域名:
(MoeLove) ➜ ~ kubectl exec pod-to-a-allowed-cnp-7b85c8db8-jrjhx -- curl -sI --connect-timeout 5 moelove.info
command terminated with exit code 28
(MoeLove) ➜ ~ kubectl exec pod-to-a-l3-denied-cnp-7f64d7b7c4-fsxrm -- curl -sI --connect-timeout 5 moelove.info
command terminated with exit code 28
可以看到,均不能正常访问。
总结
本节,主要介绍了 Cilium 和 Hubble 等。
通过使用 KIND 创建的 Kubernetes 集群,部署了 Cilium 及其相关组件,并通过一个实例,来展示了通过 hubble observe
,Hubble UI 及 Hubble metrics 等方式进行观测。
也通过实际操作,验证了 CiliumNetworkPolicy 的实际效果。
我主要是在为 Docker 写代码的过程中,会涉及到 LSM
及 seccomp
等部分,所以顺便去研究了 eBPF 及其相关技术(后续再分享这部分内容)。
而 Cilium 则是我在 2019 年上半年开始学习和研究的,但正如我在去年的文章 《K8S 生态周报| cilium 1.6 发布 100% kube-proxy 的替代品》 中写的那样:
这里稍微说几句我关于 Cilium 的看法:
- 厉不厉害?厉害。
- 值不值得研究?值得。
- 会不会放到自己的集群替代 kube-proxy ?不会,最起码目前不会。
如果你想要通过 cilium 研究 eBPF 或者 XDP 我倒是建议你可以看看,是个很不错的项目,而且通过这个项目能加深很多网络方面的认识。这么说吧,如果把 cilium 的源码及所涉及原理都研究通透了,那就很厉害了。
至于要不要替换 kube-proxy 在我看来,最起码目前我不会这样去做。解决问题的办法有很多种,而替换掉一个核心组件,却不一定是一个最值得的选择。
Cilium 是一个值得学习和研究的项目/技术,但我目前尚未将它放到生产环境中(这也是我少数花费很多精力研究,但未应用于生产的技术之一)。
但现在看来, Cilium 也有了一定的市场/发展,是时候重新考量下了。后续我会继续分享 Cilium 及 eBPF 相关的技术文章,欢迎关注。